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Abstract. We study the cluster size distributions generated by the Wolff algorithm in the framework of
the Ising model on Sierpinski fractals with Hausdorff dimension Df between 1 and 2. We show that these
distributions exhibit a scaling property involving the magnetic exponent yh associated with one of the eigen-
direction of the renormalization flows. We suggest that a single cluster tends to invade the whole lattice
as Df tends towards the lower critical dimension of the Ising model, namely 1. The autocorrelation times
associated with the Wolff and Swendsen-Wang algorithms enable us to calculate dynamical exponents; the
cluster algorithms are shown to be more efficient in reducing the critical slowing down when Df is lowered.

PACS. 68.35.Rh Phase transitions and critical phenomena – 05.45.Df Fractals – 75.10.Hk Classical spin
models – 75.40.Mg Numerical simulation studies – 89.75.Da Systems obeying scaling laws

1 Introduction

The early works dealing with magnetic phase transitions
on fractals have been done at the beginning of the eighties
by Gefen et al. [1]. Instead of the replication of an elemen-
tary cell by translation, these structures are constructed
by iteration of a generating cell, whose details are hence
present at many scales. Dealing with such systems, where
the translation invariance is broken, is a difficult task and
few analytical results are available. Moreover, it is well
known that a Monte Carlo-like approach to the study of
magnetic second order phase transitions comes up against
the difficulty of critical slowing down: The divergence of
the correlation length at the critical point affects the ef-
ficiency of Monte Carlo simulations in the critical region
because successive configurations are generally strongly
correlated [2]. The slowing down hinders the efficiency of
the simulations, in the case of phase transitions on fractal
structures, for two main reasons:

i) Reliable studies of the critical behavior require the
simulation of very large lattices, where the underlying net-
work must be self-similar over several scales.

ii) The increase in the sizes involved in a finite-size
analysis is very fast, since they define a geometrical series
for a given Hausdorff dimension.

At the end of the eighties, the mapping between the
percolation transitions and the magnetic ones, discovered
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by Fortuin and Kasteleyn [3], led Swendsen and Wang [4]
and Wolff [5] to develop algorithms able to reduce the
critical slowing down. Instead of flipping randomly chosen
spins as one should do in the case of the Metropolis algo-
rithm, one constructs one (or many) cluster at each Monte
Carlo step. The use of such algorithms, together with the
histogram method [6,7] enabled to improve significantly
the study of the problem we set out at the beginning of this
introduction. In this way, simulations of the Ising phase
transition on Sierpinski fractals have been recently car-
ried out in several Hausdorff dimensions between 1 and
3 [8–11], more efficiently than before. Monceau et al. de-
voted a recent paper to a synthetic discussion of the whole
set of results obtained from these simulations [12]. The
most striking points are the following:

i) Evidence has been found for increasing scaling cor-
rections when the fractal dimension tends towards the
lower critical dimension of the Ising model [11], namely 1.

ii) Discrepancies between the calculated critical expo-
nents and the predictions of ε expansions [13] have led to
conclude that these exponents do not only depend upon
the symmetry of the order parameter and the fractal di-
mension but also upon the topological features of the frac-
tal. Hence, the universality does not work in fractal struc-
tures in a usual way; it is said to be weak [14,15].

The goal of the studies quoted above was to deal with
the thermodynamical aspects of the phase transitions; few
works have been devoted to a study of the critical slow-
ing down on fractal structures. The dynamical aspects of



82 The European Physical Journal B

Table 1. Values of the critical parameters for SC(25, 24) and SC(9, 8) recalled from reference [11].

Structure Df TC γ/ν β/ν Df − γ/ν

SC(25, 24) 1.9746 2.0660(15) 1.750(5) 0.1108(4) 0.2246(50)

SC(9, 8) 1.8928 1.4795(5) 1.732(4) 0.075(10) 0.1608(40)

Table 2. Values of the mean cluster sizes 〈s〉k for the fractals SC(25, 24) and SC(9, 8) at the critical point for different iteration
steps k.

Structure k = 3 k = 4 k = 5 k = 6 k = 7

SC(25, 24) 5280(5) 88475(64) 1487722(2570)

SC(9, 8) 2629(2) 18054(10) 123418(51) 839247(812)

the Wolff algorithm and the associated cluster distribu-
tions have been investigated in the case of three different
fractal dimensions between 2 and 3 [16], and the short
time dynamics for a structure with a Hausdorff dimension
close to 1.89 [17]. The purpose of this article is to study
the Wolff cluster size distribution and the autocorrelation
times associated with the Wolff and Swendsen-Wang clus-
ter dynamics in the case of fractal dimensions between 1
and 2, where scaling corrections are more important than
between 2 and 3.

The outline of this paper is the following: The Ising
model on Sierpinski fractal is recalled in Section 2. The
cluster distributions generated by the Wolff algorithm and
their scaling properties are studied in Section 3. The au-
tocorrelation times and dynamical exponents associated
with the Wolff and Swendsen-Wang algorithms are inves-
tigated in Section 4.

2 The Ising model on Sierpinski fractals

The fractal structures we deal with are deterministic Sier-
pinski carpets embedded in a two-dimensional space. A
generating cell denoted by SC(l2, Nocc, 1) is firstly con-
structed by dividing a square into l2 subsquares and delet-
ing (l2 − Nocc) among them in the center of the ini-
tial square. This process is iterated on the remaining
subsquares k times. We call SC(l2, Nocc, k) the lattice
built up from a finite number k of iteration steps and
SC(l2, Nocc) the “true” fractal obtained in the thermo-
dynamical limit, when k tends to infinity. Given a fi-
nite structure SC(l2, Nocc, k), we call L = lk the size
of the lattice and N = (Nocc)

k the number of elemen-
tary subsquares. An Ising spin is located in the center of
each of them; the exchange interaction is ferromagnetic
and restricted to the first neighbors. The Ising model ex-
hibits a second order ferromagnetic transition on these
fractals [14] and the Hausdorff dimension is defined as:
Df = ln(Nocc)/ ln(l). For a given fractal SC(l2, Nocc), we
shall call TC the critical temperature, β, γ, ν the critical
exponents associated respectively with the magnetization,
the zero field magnetic susceptibility χ, and the correla-
tion length ξ.

According to the Wolff algorithm [5], we build up a
single cluster of parallel spins at each Monte Carlo step n
and we compute the total energy E(n), the magnetiza-
tion M(n), and the size s(n), namely the number of sites,

of the generated cluster. In the case of the Swendsen-Wang
algorithm [4], the maximum number of clusters are con-
structed at each Monte Carlo step n until the entire lattice
has been visited and a spin +1 or −1 is randomly assigned
to each cluster; we call E(n) the total energy and M(n)
the magnetization calculated at each step. We denote 〈E〉
and 〈|M |〉 the thermodynamical averages calculated over
the Monte Carlo run at a given temperature. The normal-
ized magnetization autocorrelation function reads as:

CM (n) =
〈|M(0)| |M(n)|〉 − 〈|M |〉2

〈M2〉 − 〈|M |〉2 (1)

where 〈|M(0)| |M(n)|〉 is the average of the energy pairs
separated by n steps. The energy autocorrelation func-
tion CE(n) follows the same form, without the absolute
values.

3 Wolff cluster size distribution

The thermodynamical aspects of the phase transitions
have been investigated by Monceau et al. [11], in the cases
of four centered Sierpinski carpets, namely SC(25, 24),
SC(9, 8), SC(16, 12) and SC(25, 16), and by Carmona
et al. [9] in the case of SC(9, 8) and SC(16, 12). Their
results show that scaling corrections can strongly affect
the finite size behavior of some thermodynamical quan-
tities, especially when the fractal dimension is lowered
from 2 to 1; the critical exponents and the critical tem-
perature cannot always be calculated, but bounds can be
provided. Moreover, the maxima of the susceptibility fol-
low the power laws expected from the finite-size analysis
χmax(L) ∼ Lγ/ν with a very good reliability, which en-
ables to calculate precisely the ratio of exponents γ/ν.
Since we focus on the cluster size distribution at the criti-
cal point, we will study SC(25, 24) and SC(9, 8), for which
values of the critical temperature can be provided [11].
The critical parameters TC , β/ν and γ/ν calculated from
a finite-size scaling analysis are summarized in Table 1.

We studied first the evolution of the mean cluster size
〈s〉k with L at the critical temperature. In each case, 5
Monte Carlo runs of NS = 106 steps have been carried out
at the critical temperature. The results are summarized in
Table 2. Power law fits under the form 〈s〉k ∼ Ldfw are
satisfied, which enables us to define the fractal dimensions



P. Monceau and P.-Y. Hsiao: Cluster Monte Carlo dynamics on fractals 83

Fig. 1. Wolff cluster size distributions Pk(s) for the fractal
SC(25, 24) at three different iteration steps k. The histograms
have been constructed with data obtained from 5× 106 Monte
Carlo steps at the critical temperature T = 2.0660 where 648
bins have been chosen. The values of the first bin are not mean-
ingful because they are subject to large fluctuations.

dfw of the Wolff clusters as 1.7525(45) and 1.747(20) for
SC(25, 24), and SC(9, 8) respectively. According to the
Fortuin-Kasteleyn mapping [3], 〈s〉k is proportional to the
zero field magnetic susceptibility χ; we can check that
the value of γ/ν extracted from the behavior of χmax(L)
and the value of dfw are compatible in the cases of these
fractals.

Figure 1 shows the normalized cluster size probability
distributions Pk(s) generated by the Wolff algorithm at
the critical temperature in the case of SC(25, 24) for dif-
ferent values of k. On the way, we notice that the precision
is better when calculating an exponent from the suscep-
tibility than from the mean cluster size since the latter
distributions are double peaked. Pk(s) is constructed in
the same way as an histogram: A number Nb of bins is
fixed and Pk(s) is the number of clusters generated by
the Wolff algorithm, whose sizes lie within the interval
[s − ∆sk/2, s + ∆sk/2[, divided by the total number of
Monte Carlo steps; ∆sk is set equal to

(
lkDf

)
/Nb. As

already pointed out in the case of Hausdorff dimensions
between 2 and 3, Pk(s) at the critical point is invariant
under a renormalization of the cluster sizes under the form
s → s/lx [16]. The data collapses of the distibutions Pk(s)
obtained when going from an iteration step k to the next
(or the previous) are shown in Figure 2 for the two frac-
tal structures we simulated. The exponent x is calculated
from a fit of our data. The scaling property of Pk(s) thus
reads as:

Pk(s) = Pk−1(s/lx). (2)

Let us now show that x is equal to the magnetic eigen-
exponent yh associated with one of the two relevant di-
rections of the renormalization flows [18]. According to

Fig. 2. Data collapses of the Wolff cluster size distributions
Pk at the critical points. The cluster size has been rescaled,
to show P3(s

∗/lx), P4(s
∗), P5(s

∗lx) for SC(25, 24) and P5(s
∗),

P6(s
∗lx), P7(s

∗l2x) for SC(9, 8) with the values of x indicated
in the text.

the renormalization group theory, the scaling behaviors of
the reduced temperature t = T/Tc − 1 and the external
magnetic field h near the criticality under a change of the
length unit from 1 to l are described by the two critical
eigen-exponents yt and yh:

t → t′ = lytt,

h → h′ = lyhh.

When a fractal is renormalized from the kth iteration
step to the previous one, the lattice size is divided by l,
the width ∆sk of the histogram bins and the number of
sites N are divided by lDf . The scaling property described
by equation (2) is more conveniently expressed in terms
of the Wolff probability density Pk(s):

Pk(s) =
1

lDf
Pk−1(s/lx). (3)

The mean size 〈s〉k of the Wolff clusters at the kth
iteration step is related to the mean size at the previous
one according to the relation:

〈s〉k =
∫ lkDf

0

sPk(s)ds = l2x−Df

∫ lkDf −x

0

s′Pk−1(s′)ds′

(4)

where s
′
= s/lx. Assuming that x < Df and since we have

Pk−1(s) = 0, ∀s > l(k−1)Df , the upper bound of the right
side integral can be decreased to l(k−1)Df , and it yields:

〈s〉k = l2x−Df 〈s〉k−1 · (5)

Since 〈s〉k is proportional to
(
lk

)γ/ν, it turns out that
2x = Df + γ/ν. Assuming that the hyperscaling rela-
tion involves the Hausdorff dimension [11], γ/ν is equal
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to 2yh − Df . Thus we have x = yh, which can be writ-
ten x = β/ν + γ/ν. The values of x calculated from the
scaling of the peaks in Pk(s) and used to plot the data
collapses in Figure 2 are 1.857 and 1.82 for SC(25, 24)
and SC(9, 8), respectively; an estimation of the error bars
leads to 1.857(6) and 1.82(1). A good agreement with the
values of yh calculated from the finite-size scaling analy-
sis is found, since it yields 1.8608(54) and 1.807(14) for
SC(25, 24) and SC(9, 8), respectively.

The structure of Pk(s) shows that very few clusters
of intermediate size are generated at the critical point
(the logarithmic scales can be misleading). This effect of
segregation between big and large clusters has already
been noticed in the translational invariant bidimension-
nal case [19] and in the case of Sierpinski fractals [16]
with a Hausdorff dimension between 2 and 3. The relative
widths ∆s/smax of the peaks of the distribution associated
with large clusters appear to narrow down as the fractal
dimension decreases, since they are equal to 0.21(2) for
SC(25, 24) and 0.09(1) for SC(9, 8); ∆s is calculated at
the half height measured from the positions of the maxi-
mum smax and the left minimum of the peaks. Thus, this
effect of segregation turns out to be all the more pro-
nounced as the fractal dimension is lowered from 2 to 1.
As a matter of fact, near the critical point, the lattice is
invaded by a low number of big clusters, even a single one,
surrounded by several small clusters. An explanation can
be provided by looking at the mean behavior of the long
range order: The spatial pair correlation function defined
as the average G(r) = 〈S(0)S(r)〉 where r is the distance
between two spin S(0) and S(r) is assumed to follow an
asymptotic power law decay at the critical point as r tends
towards infinity:

G(r) ∼

1
rDf−2+η

(6)

η, usually called the anomalous dimension exponent, can
be related to γ/ν according to a dimensional analysis [18]:
η = 2 − γ/ν. The asymptotic behavior of G(r) at the
critical temperature writes:

G(r) ∼

1
rDf−γ/ν

· (7)

The scaling of G(r) with r follows the same power law as
the scaling of the ratio of the mean cluster size to the total
number of sites of the lattice with its size L:

ρ(L) =
〈s〉k
LDf

∼

1
LDf−γ/ν

· (8)

It can be seen from the last column of Table 1 that G(r)
and ρ(L) decay all the slower as the fractal dimension is
lowered. Furthermore, ρ(L) tends to 1 as Df tends towards
the lower critical dimension of the Ising model, namely 1,
where the transition occurs at T = 0 and becomes in-
finitely narrow. We expect that the effect of invasion of
the lattice by a single cluster in the critical region, is all
the more important as the fractal dimension is lowered.

4 Dynamics

Whereas the time is a basic parameter in molecular dy-
namics simulations, the link between the time and a se-
quence of Monte Carlo steps is much less obvious: The
Markov chains generated by the Monte Carlo algorithms
can be interpreted in the framework of stochastic kinet-
ics. In this way, several kinetics processes can be defined,
according to the chosen algorithm: For instance, single
spin-flip kinetics is associated with the Metropolis algo-
rithm, while single cluster kinetics is associated with the
Wolff one. There is much to learn in studying the relax-
ation, that is, how a system is driven to thermal equilib-
rium. Static critical properties, as well as dynamic ones,
can be brought out by annealing [20] or quenching [17]
an Ising system on a fractal-like structure to the critical
temperature. Let us notice that unfortunately, no quan-
titative comparisons can be achieved between the results
of the two papers quoted above and ours because spins
are not placed in the same way on the lattice. Since we
want to focus on the critical slowing down, we simulate
systems at thermal equilibrium and at the critical temper-
ature; thus, our dynamical study involves the autocorrela-
tion functions defined in Section 2. There are many ways
to calculate times from these functions [19], and different
physical meanings can be given to them. We deal with the
integrated autocorrelation times because they are directly
related to the statistical errors associated with the ther-
mal averages; thus they provide a measure of the critical
slowing down. Let us recall that the statistical error δ 〈E〉
associated with the mean value of the energy 〈E〉 calcu-
lated from a Monte Carlo run of NS steps can be written
as [2]:

(δ 〈E〉)2 � 1
Ns

(〈
E2

〉 − 〈E〉2
) [

1 + 2
τE

δt

]
(9)

where τE is the integrated autocorrelation time associated

with E, defined as τE =
∞∫
0

cE(t)dt, cE(t) being the auto-

correlation function in the continuous limit; δt is the unit
time associated with one Monte Carlo step. As in the cases
of Hausdorff dimensions larger than two [16], we develop
CE(n) (and CM (n)) on a restricted basis of exponential
functions:

CE(n) =
p∑

i=1

ai exp (−n/τi) . (10)

The integrated autocorrelation times are easily calculated
from the fits of the autocorrelation functions according to

the relation: τE =
p∑

i=1

τiai, with
p∑

i=1

ai = 1.

4.1 Wolff dynamics

Comparisons between algorithms can be properly achieved
only if the time unit is the same. Conventionally, this unit
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Table 3. Values of the energy (τme
E ) and magnetization (τme

M ) integrated autocorrelation times measured at different iteration
steps k for the Wolff algorithm. The next to last column shows the values of zme

w directly obtained from power law fits, and the
last column the values of zw deduced from the equation (11).

Structure k = 3 k = 4 k = 5 k = 6 k = 7 zme
w zw

SC(25, 24) τme
M 3.630(8) 5.45(2) 8.01(15) 0.246(8) 0.0214(130)

SC(25, 24) τme
E 5.650(5) 10.80(7) 19.25(15) 0.377(8) 0.1524(130)

SC(9, 8) τme
M 1.182(2) 1.283(6) 1.335(2) 1.397(3) 0.0387(31) −0.12

SC(9, 8) τme
E 1.774(2) 2.447(20) 3.155(37) 4.232(8) 0.250(6) 0.089(15)

is the Monte Carlo step per entire lattice update. Since
s(n) single spin flips correspond to one Wolff step, the
integrated Wolff autocorrelation times τme

E and τme
M (per

Wolff cluster) measured from the decay of the autocor-
relation functions have to be rescaled according to the
relation: τE = 〈s〉k

Ldfw
τme
E . If the measured autocorrelation

times τme
E follow a power law at the critical temperature

with an exponent zme
w , the Wolff dynamical critical expo-

nent zw associated with the fractal structure SC(l2, Nocc)
reads:

zw = zme
w +

γ

ν
− Df . (11)

The autocorrelation functions have firstly been calcu-
lated from each Wolff Monte Carlo run of 106 steps at
the critical temperatures, and their averages deduced from
these 5 results. They have secondly been calculated from
a single Wolff Monte Carlo run over 5 × 106 steps. The
consistency between the two methods have been checked.
Fits under the form given in equation (10) have then been
performed from n = 0 to a cutoff nC , and integrated au-
tocorrelation times deduced from the results of the fits;
p = 2 or p = 3 exponential functions yield reliable fits. In
the case of the magnetization, we let nC vary from 50 to
1500 in order to check that the values of τme

M are stable
with respect to nC . In the case of the energy, the unphys-
ical tails of the autocorrelation functions appear earlier
and the maximum value of nC must be smaller. As a re-
sult, the values of the measured integrated autocorrelation
times τme

E and τme
M with their error bars are reported in

Table 3 and the values of the exponents zme
w extracted

from power law fits are reported in the next to last col-
umn of Table 3. We should point out that, although the
fits are performed from a small number of points, these
points are distributed over a large range of sizes. The evo-
lution of the rescaled times with L is shown in Figure 3 in
logarithmic coordinates. The values of the dynamical ex-
ponents zw, reported in the last column of Table 3, deserve
the following comments:

i) The behavior of the energy and the magnetization
provide different dynamical exponents; the Wolff algo-
rithm is always more efficient in decorrelating the mag-
netization. The negative value of zw(M) in the case of
SC(9, 8) means that less than an entire lattice update is
sufficient to decorrelate M .

ii) The values of the dynamical exponent associated
with the slowest quantity, namely zw(E), are positive (it

1

10

100 1000

W(E)

SW(E)

W(M)

SW(M)

L
Fig. 3. Integrated autocorrelation times for the Swendsen-
Wang algorithm (indicated by SW (E) for the energy and
SW (M) for the magnetization) and rescaled times for the Wolff
ones (W (E) and W (M)) as a function of L for SC(25, 24).

means that τ(E) increases with L). Moreover, the Wolff
algorithm is all the more efficient in reducing the criti-
cal slowing down as the fractal dimension decreases, since
zw(E) decreases with Df . We should stress that such a
conclusion cannot be drawn for structures which share the
same fractal dimensions but different generating cells.

4.2 Swendsen-Wang dynamics

The integrated autocorrelation times have been calculated
from Swendsen-Wang Monte Carlo simulations performed
under the same conditions as the Wolff ones. Since the
entire lattice is updated during a Swendsen-Wang Monte
Carlo step, there is no need to rescale the measured times;
the values of τE and τM with the error bars are summa-
rized in Table 4. Figure 4 shows their behavior with the
lattice size L. The dynamical exponents zsw calculated
from power law fits are reported in the last column of
Table 4. We should point out that the Swendsen-Wang
algorithm share the following features with the Wolff one:

i) The values of zsw(M) are smaller than zsw(E); it
remains less difficult to decorrelate the magnetization than



86 The European Physical Journal B

Table 4. Values of the energy (τE) and magnetization (τM ) integrated autocorrelation times measured at different iteration
steps k for the Swendsen-Wang algorithm. The last column shows the values of zsw directly obtained from power law fits.

Structure k = 3 k = 4 k = 5 k = 6 k = 7 zsw

SC(25, 24) τM 3.70(2) 4.27(10) 4.67(10) 0.072(12)

SC(25, 24) τE 4.72(3) 6.26(12) 8.2(1.4) 0.17(5)

SC(9, 8) τM 2.16(2) 2.05(3) 1.96(3) 1.84(5) −0.048

SC(9, 8) τE 2.48(2) 2.58(4) 2.73(6) 2.77(9) 0.035(20)

0.5

0.6

0.7

0.8
0.9

1

2

100 1000

SW(E)

SW(M)

W(E)

W(M)

L
Fig. 4. Integrated autocorrelation times for the Swendsen-
Wang algorithm (SW (E) and SW (M)) and rescaled times
for the Wolff ones (W (E) and W (M)) as a function of L for
SC(9, 8).

the energy. The negative value of zsw(M) in the case of
SC(9, 8) confirms that less than an entire lattice update
is sufficient to decorrelate M .

ii) The values of the exponent associated with the slow-
est physical quantity, namely zsw(E) are positive and de-
crease with Df .

Moreover, the comparison between the efficiency of the
algorithms in reducing the critical slowing down can be
conveniently achieved by looking at Figures 3 and 4: the
rescaled autocorrelation times for the Wolff algorithm and
the autocorrelation times for the Swendsen-Wang ones are
plotted together as a function of L. It turns out that Wolff
is always more efficient in the range of sizes we studied.
Nevertheless a kind of crossover seems to arise in the case
of SC(9, 8), where Swendsen-Wang should be more effi-
cient in decorrelating the energy when the size L becomes
very large (about L > 313). We should mention than the
rigourous Li-Sokal lower bound α/ν for the Swendsen-
Wang algorithm [21] holds in the case of the fractal struc-
tures we studied (since α is negative).

A part of the numerical simulations has been carried out in the
Institut de Développement et des Ressources en Informatique
Scientifique (IDRIS), supported by the Centre National de la
Recherche Scientifique (project number 021186). We acknowl-
edge the scientific committee and the staff of the center. We
are also grateful to the Centre de Calcul Recherche (CCR) of
the University Paris VII Denis Diderot, where the rest of the
simulations have been done.
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